AkbLi » Информация » Внутреннее устройство литий-ионного аккумулятора

Внутреннее устройство литий-ионного аккумулятора


Внутреннее устройство литий-ионного аккумулятораВнутреннее устройство литий-ионного аккумулятора

Пришло время погрузиться в глубины химии литий-ионных аккумуляторов.

Попытки создания вторичных химических источников тока восходят к двадцатым годам прошлого века. Исследователей привлекала высокая теоретическая емкость таких аккумуляторов.

Препятствием на пути к литиевому аккумулятору стала высокая реакционная способность лития. Даже в 1980-х промышленные литиевые аккумуляторные батареи представляли весьма взрыво- и огнеопасные изделия, со средней циклируемостью в 50 циклов. Основной причиной выхода из строя литиевых аккумуляторов было прорастание дендритов лития, образующиеся при циклировании, до электрода с противоположным знаком, что приводило к короткому замыканию внутри элемента и быстрому разогреву. При этом литий бурно реагировал с органическим электролитом, что достаточно часто приводило к взрыву.

Прогресс в области электроники усилил потребность в емких и легких перезаряжаемых источниках тока, а также создал предпосылки к появлению систем управления аккумуляторными батареями (BMS). В 1992 году корпорация Sony представила миру новое видение аккумулятора на основе лития.

В новых аккумуляторах металлический литий был заменен более безопасной ионной формой. Для обеспечения безопасности аккумуляторные батареи оснащались системой BMS (контроль режимов заряда и разряда позволил резко снизить риск появления в аккумуляторе металлического лития - основного виновника взрывоопасности литий-ионного аккумулятора).

Первый литий-ионный аккумулятор имел положительный электрод на основе кобальтата лития, отрицательный электрод на основе углерода (Sony применила кокс - материал, получаемый при термической обработке каменного угля) и электролит на базе гексафторфосфида лития, растворенного в органическом растворителе.

Поскольку Sony не спешила делиться патентом на свои новые аккумуляторы, другие производители нашли выход из положения в применении новых химических составов электродов и изменении свойств электролита.

Первые модификации затронули структуру отрицательного электрода - кокс заменяли на графит различной степени зернистости. Однако, химики Sony настолько удачно применили дешевый кокс с великолепными характеристиками, что другим производителям аналогичных аккумуляторов с графитовыми электродами пришлось пройти долгий путь до подбора правильной структуры графитового порошка, обеспечивающего такие же параметры при эксплуатации.

Поскольку литий-кобальтовый положительный электрод уже был запатентован Sony, то взоры исследователей обратились к альтернативным вариантам - электроды создавались на базе литий-марганцевых, литий-железо-фосфатных и многих других химических составляющих.

 

Схема кристаллической решетки литий-кобальтового электрода

Многие из новых электродов показали себя с лучшей стороны и оказались востребованными рынком. В настоящее время наибольшее распространение получили литий-марганцевые, литий-кобальтовые и литий-железофосфатные литий-ионные аккумуляторы.

С помощью замечательной бесплатной программы 3D моделирования Blender мне удалось схематично представить кристаллические решетки различных вариантов положительных электродов литий-ионных аккумуляторов.

Как вы можете видеть - для литий-кобальтовой кристаллической решетки характерно расположение ионов лития послойно. Такое расположение предсказывает достаточно хорошие разрядные характеристики аккумулятора, однако стабильность такой кристаллической решетки относительно низка, поэтому литий-кобальтовые аккумуляторы плохо переносят разряд большими токами.

 Кристаллическая решетка литий-марганцевого электрода


Для литий-марганцевых аккумуляторов характерно "трехмерное" расположение ионов лития в кристаллической решетке положительного электрода. Такое расположение ведет к хорошей переносимости высоких токов разряда и достаточно хорошей стабильности электрода в процессе эксплуатации.

Литий-железофосфатные положительные электроды весьма стабильны - что очень хорошо видно по крепкой кристаллической решетке с "каналами" для ионов лития. Однако этот факт резко ограничивает подвижность ионов лития и такими электродами стали пользоваться относительно недавно - после того, как производителям удалось создать электроды, собираемые из частиц литий-железофосфата размером в сотни нанометров (размер частиц в сто раз меньше, чем у "3D" литий-марганцевых аккумуляторов, следовательно общая площадь на четыре порядка выше и этот факт кардинально улучшает характеристики литий-железофосфата).

 Схема кристаллической решетки железофосфата лития


Приобретя модную нынче приставку "нано-" к своему названию, литий-железофосфатные аккумуляторы оказались одними из самых перспективных для дальнейшего использования в мощных устройствах (их можно использовать даже как стартерные аккумуляторы для автомобилей).

Кроме материала для отрицательного электрода производители научились применять в качестве электролита полимерный материал с включениями гелеобразного литий-проводящего наполнителя. Такие литий-ионные аккумуляторы с полимерным электролитом сейчас стали стандартом для миниатюрных устройств.

Разработки в области полимерных электролитов позволили создать твердый электролит, проводящий ионы лития по механизму обмена ионов внутри матрицы электролита. Такой электролит позволил вернуть к жизни захиревшие аккумуляторы с электродами из металлического лития.

Твердый электролит создает в месте контакта с металлическим литием поверхность, препятствующую образованию дендритов лития при циклировании, что позволяет забыть об основной проблеме, приводящей к возгоранию и взрыву литиевых аккумуляторов.

Как всегда, в бочке меда оказалась хорошая примесь дегтя - литий-полимерные аккумуляторы могут работать только при температурах свыше 40 градусов Цельсия (так как ионная проводимость твердого электролита при комнатной температуре ничтожна). Необходимость высокой рабочей температуры диктует необходимость системы подогрева аккумулятора - поэтому можно не верить производителям, гордо маркирующим свои аккумуляторы для мобильных телефонов как "Li-Pol" (на самом деле это литий-ионный аккумулятор с полимерным электролитом).

Как бы мне не хотелось закончить статью, однако осталась еще тема отрицательного электрода в литий-ионном аккумуляторе. В настоящее время появляются разработки на базе титаната лития (с модной приставкой "нано-"). Сочетание этих электродов с положительными электродами на основе литий-железофосфата сулит резкое увеличение срока жизни и уровня безопасности литий-ионных аккумуляторов.

Конечно же, в небольшой статье невозможно охватить такую емкую тему, как химия основанных на литии вторичных химических источников тока, однако беглый обзор существующих решений поможет читателю не утонуть в огромной массе рекламных заявлений производителей. Каждые полгода появляются новые разработки на ниве литий-ионных аккумуляторов, и только время и опыт может дать ответы на вопросы соответствия эксплуатационных характеристик, заявленных производителями, реальным показателям.
Внимание! Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.